Antisense oligonucleotide-mediated Dnm2 knockdown prevents and reverts myotubular myopathy in mice

نویسندگان

  • Hichem Tasfaout
  • Suzie Buono
  • Shuling Guo
  • Christine Kretz
  • Nadia Messaddeq
  • Sheri Booten
  • Sarah Greenlee
  • Brett P Monia
  • Belinda S Cowling
  • Jocelyn Laporte
چکیده

Centronuclear myopathies (CNM) are non-dystrophic muscle diseases for which no effective therapy is currently available. The most severe form, X-linked CNM, is caused by myotubularin 1 (MTM1) loss-of-function mutations, while the main autosomal dominant form is due to dynamin2 (DNM2) mutations. We previously showed that genetic reduction of DNM2 expression in Mtm1 knockout (Mtm1KO) mice prevents development of muscle pathology. Here we show that systemic delivery of Dnm2 antisense oligonucleotides (ASOs) into Mtm1KO mice efficiently reduces DNM2 protein level in muscle and prevents the myopathy from developing. Moreover, systemic ASO injection into severely affected mice leads to reversal of muscle pathology within 2 weeks. Thus, ASO-mediated DNM2 knockdown can efficiently correct muscle defects due to loss of MTM1, providing an attractive therapeutic strategy for this disease.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reducing dynamin 2 expression rescues X-linked centronuclear myopathy.

Centronuclear myopathies (CNM) are congenital disorders associated with muscle weakness and abnormally located nuclei in skeletal muscle. An autosomal dominant form of CNM results from mutations in the gene encoding dynamin 2 (DNM2), and loss-of-function mutations in the gene encoding myotubularin (MTM1) result in X-linked CNM (XLCNM, also called myotubular myopathy), which promotes severe neon...

متن کامل

A zebrafish model for FHL1-opathy reveals loss-of-function effects of human FHL1 mutations

Missense mutations in the four and a half LIM domain 1 (FHL1) gene were found to cause X-linked inherited myopathies of both skeletal and heart muscle. However, the mechanisms by which FHL1 mutations impact on FHL1 function and lead to alteration of muscle structure and function have not been deciphered yet. We generated here by Morpholino-modified antisense oligonucleotide-mediated gene knockd...

متن کامل

Two Dynamin-2 Genes Are Required for Normal Zebrafish Development

Dynamin-2 (DNM2) is a large GTPase involved in clathrin-mediated endocytosis and related trafficking pathways. Mutations in human DNM2 cause two distinct neuromuscular disorders: centronuclear myopathy and Charcot-Marie-Tooth disease. Zebrafish have been shown to be an excellent animal model for many neurologic disorders, and this system has the potential to inform our understanding of DNM2-rel...

متن کامل

Frequency and Phenotype of Myotubular Myopathy Amongst Danish Patients with Congenital Myopathy Older than 5 Years

BACKGROUND Centronuclear myopathy (CNM) is one of four main subtypes of congenital myopathy. X-linked myotubular myopathy (XLMTM) is considered one of the most severe forms, but survivors past infancy have been described. However, detailed information on XLMTM phenotypes in patients who survive infancy is scarce. OBJECTIVE The aim of the study was to report the genetic findings in patients wi...

متن کامل

Loss of Myotubularin Function Results in T-Tubule Disorganization in Zebrafish and Human Myotubular Myopathy

Myotubularin is a lipid phosphatase implicated in endosomal trafficking in vitro, but with an unknown function in vivo. Mutations in myotubularin cause myotubular myopathy, a devastating congenital myopathy with unclear pathogenesis and no current therapies. Myotubular myopathy was the first described of a growing list of conditions caused by mutations in proteins implicated in membrane traffic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017